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What i1s model building ?

We have

some (not enough) chemical rules/reaction rates
some observations of the system dynamics

We want to construct a model, which follows chemra&es

and system dynamics, Is solvable and has somecpxex|
power.

Inverse problem to solve:
we know the system dynamics,
we do not know the dynamical syte




Regulatory Motifs

Feedbacks: negative (homeostasis, stochasticityatpn
positive (bistability)

Time delays: stiff — transcription (~ 40bp/s)
— translation (15 a.a.)

. distributed — transport
— modifications
— Intermediates

Negative feedback + time delay oscillations (supercritical Hopf)

Positive feedback + negativ2 oscillations (subcritical Hopf, SNIC
bifurcation), bistability yes or no signaling)

Kinetic proofreading




Reqgulatory Motifs

Kinase cascades> signal amplification

Non linear elements:
modifications (phosphorylation, ubiquitination et
dimerization (polimerization)
scafolds

and many others (N&B -- IKBa)

Transient activity (IKK kinase)




Stochasticity in regulatory networks

Stochastic system ? Consider its deterministictlim

e Stochasticity is not as important when the systasdnly
one stable steady state

e Stochasticity is important for data interpretataond
model building when system has stable limit cycle

o Stochasticity is important for cell dynamics antefavhen
the system has two or more stable steady statesibcycle




Model predictions and single cell dalalson et al, Science 200/
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Bistability in gene expression




(Over)simplified schematic of gene expression
 Regulatory proteinshange gene status

Regulatory

proteins Interactions
-

inactive active

. gene protein

lr

degradation degradation

e The number of molecules involved:

1< DNA< mRNA< protein<10°




Protein is directly produced from the gene

Stochastic Deterministic
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Deterministic system has one or two stable equuiror
points depending on the parametdls C




Transient probability density functions

Transient distribution: c0=8.5, d0=150,c2=620

Stable deterministic solutions are at 0.07 and 0.63




Transient probability density functions

Transient distribbution: c0=8.5, d0=150, ¢c2=620

Stable deterministic solutions are at 0.07 and 0.63




Stochastic switches and amplification processe

* gene activatiorn? transcription>translation
* receptor activation> kinase cascade (TCR, TNFR)

e Calcium fluxes (calcium channels are open by caigi

P4

time 0 sec




Stochastic switches and amplification cascades
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Figure 2 Hysteresis and bistability in single cells. a, Overlayed green fluorescence and
inverted phase-contrast images of cells that are initially uninduced for /ac expression, then
grown for 20h in 18 pM TMG. The cell population shows a bimodal distribution of fac
expression levels, with induced cells having over one hundred times the green
fluorescence of uninduced cells. Scale bar, 2 p.m. b, Behaviour of a series of cell
populations, each initially uninduced (lower panel) or fully induced (upper panel) for lac
expression, then grown in media containing various amounts of TMG. Scatter plots show
log(green fluorescence) versus log(red fluorescence) for about 1,000 cells in each
population. Each scatter plot is centred at a position that indicates the underlying TMG
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Ozbuzdak et al, Nature 2004.

©2004 Nature Publishing Group
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concentration. The scale bar represents variation in red fluorescence by a factor of 10.
White arrows indicate the initial states of the cell populations in each panel. The TMG
concentration must increase above 30 M to turn on initially uninduced cells (up arrow),
whereas it must decrease below 3 M to turn off initially induced cells (down arrow). The
grey region shows the range of TMG concentrations over which the system is hysteretic.
¢, The phase diagram of the wild-type lactose utilization network. When glucose is added
to the medium, the hysteretic region moves to higher levels of TMG. At each glucose level,
the lower (down arrow) and upper (up arrow) switching thresholds show those
concentrations of TMG at which less than 5% of the cells are in their initial states.

NATURE | VOL 427 19 FEBRUARY 2004 | www.nature.com/nature




Bistability and stochasticity in T cell
receptor signaling
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T-cells=T lymphocytes

T-cells govern the adaptive immune response irebestes
T-cells are activated by foreign antigens (peptides)

Two main types of T-celld1elperandcytotoxic.

Helper T-cellswhen activated secrete cytokines inducing
B-cells to proliferate and mature into antibodyreéng cells.

Cytotoxic (killer) T-cellswhen activated induce apoptosis in

cells on which they recognize foreign peptides.ylaet on fast scale of
order of few minutes.




Facts

High number (100 000) of endogenous peptides rding
time of ~ 0.01-0.1 second have no effect on ceiViay.

Few agonist peptides/cell with binding time > ¥sigh activity

Peptides with binding time of ~ 1s are antagoaistiney do not
stimulate T-cells, and also inhibit T-cell activatiresulting from
stimulation by agonist peptides.




Kinetic proofreading

endogenous antagonist agonist

? 3 .
T .[ T-cell actl\gty

Ly

P
y

T=T-cell receptor

P=Peptide Positive
L=Lck Negative I\ feedback
S=Shp feedback Sp Epp

E=Erk

P= receptor phosphorylation

Y= Lck theorine phosphorylation

Rabinowitz 1996, Stefanova 2003, Altan-Bonnet 2C



Model of T-cell receptor signalling
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P= receptor phosphorylation

y= theorine phosphorylation

$= serine phosphorylation

Peptide (P) dissociation results in immediate complex disassembly and
Lck (L) and TCR (T) dephosphorylation



Amplification

&

cooperativity




Nonlinearity in negative feedback

Inhibited




Mathematical representation

1. Deterministic: 37 ordinary differential equatiomgh
97 chemical reactions.

2. Stochastic: 97 reactions simulated using direct
stochastic simulation algorithm, Gillespie 1977.

Use BioNetGen ! It goes 100 time faster than Mnat
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Kinetic discrimination
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Antagonisms




Stochastic versus deterministic trajectories
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Bistability
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Monostable
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Primed Inhibited

Deterministig

Stochastic

Stochastic

Time in seconds Time in seconds

Agonist and antagoni_st Antagonist stimulation starts at t=0,
stimulation starts at t=1000s agonist stimulation starts at t=1000s




Conclusions

Discrimination between agonist, endogenous andjantat peptides
IS due to kinetic proofreading and competitionpafsitive and negative

feedbacks
* The system exhibit bistability and high stochastic

o This lead to a specific competition: bistabiligses cell fate decisio
while stochasticity makes that these decisiongerersible




Stochastic model of p5S3 regulation

Krzysztof Puszynski, Beata Hat, Tomasz Lipniacki

Why p537?

P53 Is a transcription factor that regulates haddrof resposible for
- DNA repair,
- cell cycle arrest
- apoptosis (programmed cell death)

P53 Is mutated (or absent) in 50% of solid tumors,
In other 50% gene controlling p53 are mutated.

e 50 000 experimental citations, less than 100 #texal papers




Normalized nuclear fluorescence (a.u.

Single cell
experiment
(Geva-Zatorski et al. 2006)

- continuous oscillations for 72 hour
after gamma irradiation

- fraction of oscillating cells
Increases with gamma dose
reaching about 60% for 10 Gy.

- even after 10 Gy dose, analyzed
cells proliferated




Negative feedback +
Positive feedback with time delay




“Our pathway”




Negative feedback loop

Cytoplasm

Nucleus




Positive feedback loop




No PTEN (positive feedback blocked); No DNA repair

PTEN mRNA

30 60 90
PTEN gene state

30 60 90 e 30 60 90 - 30 60 90 120
Time in hours Time in hours Time in hours

DNA damage = p53 phosphorylation + MDM2 degradation




PTENON (positive feedback active); No DNA repair

MDM2 gene state

30 60 90 0 30 60 90 120 30 60 90
Time in hours Time in hours Time in hours

DNA damage = p53 phosphorylation + MDM2 degradation




PTENON (positive feedback active); DNA rep&N

[A] Dose 1 Gy

[B] Dose 2 Gy

[C] Dose 3 Gy

Number of DSB

——
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Number of DSB
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Number of DSB

3;0 60 9i0
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Time in hours

Time in hours
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P53 produces proapoptotic factor, which cuts DNA




Dose 1 Gy

Apoptotic (14)

Surviving (186)
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Dose 2 Gy

Cell population separates into surviving and apoptotic cells
48 hours after gamma radiation.

Dose 1.5 Gy
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d . N .
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%MDM& (t) = so (Gar1 + Garz) — dr MDM;(t).

TEPTE Ny(t) = s, (Gpy + Gpg) — dg PTEN, ().
dt

d ... gz P532
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Transition probabilities governing dynamics of
discrete variable€sw, Gp,N

el X0\ a0 oMl £ (. At) = At x (qo + 1 x P532,(t)).

Gene inactivation: [IEI Y

DNA dam age. PPAM (3 At) = At x dpam x R+ At x ag ( 1 ‘) )

. ‘lmax ,

. ._ .. At xdrgp x Pa(t)
DNA repair: AL = N F @ T Near x Palt

Piece-wise deterministic, time continuous Markovoass




Numerical implementation

At the simulation time t for given /..., Apregy @nd NB calculate total
propensity function of occurence of any of the rieact

— s Q d a d a d
r(t) — rDNA + rDNA T ermZ T ermZ T rPTEN t rPTEN

Select two random numbersgnd p from the uniform distribution on
(0,1)

Evaluate the ODE system until time such that:

t+7

log(p,) + [r(s)ds=0

Determine which reaction occurs in timertdsing the inequality:

k-1 k
HE+T)<p,*r(t+7)< ) r(t+7)
=1 i=1

where k is the index of the reaction to occur afigt) individual reaction
propensities
Replace time tHy t and go back to item 1




Stochastic robustness of NiB
signaling
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Two feedback model of NkB dynamics

e Key players .
y play LU .

MEMBRANE

— NF«B (transcription factor)
IKBa (inhibits NFkB)
IKK (destroys kBa )
IKKK (activates IKK)
TNFR1 (activates IKKK)

— A20 (inactivates IKK)

Feedbacks

— NF«KB promotes
transcription of kBa

— NF«KB promotes
transcription of A20

IKBa mRNA DNA



The model: processes considered

CELL
MEMBRANE

IKKK activation

IKK activation, IKKa->IKKi

Synthesis of protein

complexes

Catalytic degradation

of IKBa

MRNA transcription

mRNA translation LR S

Transport between CYTOPLASM
NUCLEUS
compartments oD

Modeling: 15 ODEs

NF-xB

IkBa

lxBa mRNA




Stochastic switches and amplification cascades

[B]

Inactive ——————, Active

Receptory | | Receptor
— 11 4“ —

binding dissociation

ACTIVE
GEN K

.

.
3
.
)
5
3
.
.
.
.
.
.
.
| 4
.
o
i




Stochastic gene activation
NF-kB dissociation

G -of
NF- kB binding

n
Gene activity G is a sum of activities G = ZG
G; of n homologous gene copies. =
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Single cell simulations for various TNF doses




Small TNF dose

X 10?1 Active KK [B] x 107 Nuclear NFB
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Cheong R et al. (2006) J Biol Chem 281: 2945-2950




Conclusions

Stochasticity as a way of defense:

High dose:

First 1.5h: samefor all cells (inflamatory genes),

then different (late genes activation)
L ow dose:

some cells respond some not, the minimum response is
guite strong.




